- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dos Santos, Bruno Freitas (1)
-
Gu, Yanqi (1)
-
Gu, Yanqi. (1)
-
Jarecki, Stanislaw (1)
-
Jarecki, Stanislaw. (1)
-
Krawczyk, Hugo (1)
-
Santos, Bruno Freitas (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
Dunkelman, O. (1)
-
Dziembowski, S (1)
-
Hazay, Carmit (1)
-
Stam, Martin (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hazay, Carmit; Stam, Martin (Ed.)An Ideal Cipher (IC) is a cipher where each key defines a random permutation on the domain. Ideal Cipher on a group has many attractive applications, e.g., the Encrypted Key Exchange (EKE) protocol for Password Authenticated Key Exchange (PAKE) [8], or asymmetric PAKE (aPAKE) [31, 33]. However, known constructions for IC on a group domain all have drawbacks, including key leakage from timing information [12], requiring 4 hash-onto-group operations if IC is an 8-round Feistel [22], and limiting the domain to half the group [9] or using variable-time encoding [39, 47] if IC is implemented via (quasi-) bijections from groups to bitstrings [33]. We propose an IC relaxation called a (Randomized) Half-Ideal Cipher (HIC), and we show that HIC on a group can be realized by a modified 2-round Feistel (m2F), at a cost of 1 hash-onto-group operation, which beats existing IC constructions in versatility and computational cost. HIC weakens IC properties by letting part of the ciphertext be non-random, but we exemplify that it can be used as a drop-in replacement for IC by showing that EKE [8] and aPAKE of [33] realize respectively UC PAKE and UC aPAKE even if they use HIC instead of IC. The m2F construction can also serve as IC domain extension, because m2F constructs HIC on domain D from an RO-indifferentiable hash onto D and an IC on 2k-bit strings, for k a security parameter. One application of such extender is a modular lattice-based UC PAKE using EKE instantiated with HIC and anonymous lattice-based KEM.more » « less
-
Dos Santos, Bruno Freitas; Gu, Yanqi.; Jarecki, Stanislaw.; Krawczyk, Hugo (, Lecture Notes in Computer Science (LNCS))Dunkelman, O.; Dziembowski, S (Ed.)In Crypto’21 Gu, Jarecki, and Krawczyk [25] showed an asymmetric password authenticated key exchange protocol (aPAKE) whose computational cost matches (symmetric) password authenticated key exchange (PAKE) and plain (i.e. unauthenticated) key exchange (KE). However, this minimal-cost aPAKE did not match prior aPAKE’s in round complexity, using 4 rounds assuming the client initiates compared to 2 rounds in an aPAKE of Bradley et al. [13]. In this paper we show two aPAKE protocols (but not strong aPAKEs like [13, 30]), which achieve optimal computational cost and optimal round complexity. Our protocols can be seen as variants of the Encrypted Key Exchange (EKE) compiler of Bellovin and Merritt [7], which creates password-authenticated key exchange by password-encrypting messages in a key exchange protocol. Whereas Bellovin and Merritt used this method to construct a PAKE by applying password-encryption to KE messages, we construct an aPAKE by password-encrypting messages of a unilaterally authenticated Key Exchange (ua-KE). We present two versions of this compiler. The first uses salted password hash and takes 2 rounds if the server initiates. The second uses unsalted password hash and takes a single simultaneous flow, thus simultaneously matching the minimal computational cost and the minimal round complexity of PAKE and KE. We analyze our aPAKE protocols assuming an Ideal Cipher (IC) on a group, and we analyze them as modular constructions from ua-KE realized via a universally composable Authenticated Key Exchange where the server uses one-time keys (otk-AKE). We also show that one-pass variants of 3DH and HMQV securely realize otk-AKE in the ROM. Interestingly, the two resulting concrete aPAKE’s use the exact same protocol messages as variants of EKE, and the only difference between the symmetric PAKE (EKE) and asymmetric PAKE (our protocols) is in the key derivation equation.more » « less
An official website of the United States government
